Math 245C Lecture 21 Notes

Daniel Raban

May 17, 2019

1 Isomorphism, Unitary Property of the Fourier Transform, and Periodic Functions

1.1 The Fourier transform on the Schwarz space

If $f, \hat{f} \in L^1$, then $f \stackrel{\text{a.e.}}{=} (f^{\vee})^{\wedge}$, where, $f^{\vee} = \hat{f} \circ O$, and O(x) = -x.

Corollary 1.1. If $f \in L^1$ and $\hat{f} = 0$, then $f \equiv 0$ a.e.

Proof. We have $f, \hat{f} \in L^1$, and so

$$f \equiv (f^{\vee})^{\wedge} = (\widehat{f} \circ 0)^{\wedge} = 0^{\wedge} = 0.$$

Corollary 1.2. $\mathcal{F} : \mathcal{S} \to \mathcal{S}$ is an isomorphism.

Proof. By the previous corollary, the kernel of $\mathcal{F}|_{\mathcal{S}}$ is $\{0\}$. Since \mathcal{F} is linear, we conclude that $\mathcal{F}|_{\mathcal{S}}$ is one-to-one. We want to show that $\mathcal{F}|_{\mathcal{S}}$ is onto. Let $g \in \mathcal{S}$. Since $\hat{g} \in \mathscr{S}$, we have $\hat{g}, g \in \mathcal{S}$, and so $g = \widehat{g} \circ O = \mathcal{F}(\widehat{g} \circ O)$. Since $\widehat{g} \cong O \in \mathcal{S}$, we have proven that $\mathcal{F}^{-1}(g) = \widehat{g} \circ O$. That is, $\mathcal{F}^{-1} = \mathcal{F} \circ O$. Since \mathcal{F} maps \mathcal{S} continuous to \mathcal{S} , so does $\mathcal{F} \circ O = \mathcal{F}^{-1}$.

1.2 Unitary property of the Fourier transform

Theorem 1.1. The Fourier transform has the following properties:

- 1. \mathcal{F} maps $L^1 \cap L^2$ into L^2 .
- 2. \mathcal{F} extends to a unitary transformation $\tilde{\mathcal{F}}: L^2 \to L^2$.

Proof. Set $A = \{f \in L^1 : \hat{f} \in L^1\}$. We claim that $A \subseteq L^2$. Let $f \in A$. Then $f = (f^{\vee})^{\wedge}$ a.e. This is in L^{∞} , as $\hat{f} \in L^1$. Since $\frac{1}{2} = \frac{1/2}{1} + \frac{1/2}{\infty}$, we conclude that

$$\|f\|_2 \le \|f\|_{\infty}^{1/2} \|f\|_1^{1/2}$$

Observe that $L^2 = \overline{\mathcal{S}}^{L^2} \subseteq \overline{A}^{L^2} \subseteq L^2$. So A is dense in L^2 . Isometry: Let $f, g \in A$. We have

$$\int_{\mathbb{R}^n} f\overline{g} = \int_{\mathbb{R}^n} f(\overline{g}^{\vee})^{\wedge} = \int_{\mathbb{R}^d} \widehat{f}\overline{g}^{\vee} = \int \widehat{f}\overline{\widehat{g}}.$$

In particular,

$$\int_{\mathbb{R}^n} |f|^2 \, dx = \int_{\mathbb{R}^n} |\widehat{f}|^2 \, d\xi.$$

Extension: Since A is dense in L^2 , this gives us that f extends to a linear operator $\tilde{\mathcal{F}}: L^2 \to L^2$ such that $\|\tilde{\mathcal{F}}\|_2 = \|f\|_2$. It remains to check that $\tilde{\mathcal{F}} = \mathcal{F}(f)$ for $f \in L^1 \cap L^2$. Set

$$\rho(x) = e^{-\pi |x|^2}, \qquad \rho_r(x) = \frac{1}{t^n} \rho(x/t).$$

Let $f \in L^1 \cap L^2$. We have $\rho_t * f \in L^1 \cap L^2$, and

$$\widehat{\rho_t * f} = \widehat{\rho_t} \widehat{f} = \underbrace{e^{2\pi i |\xi|^2}}_{\in L^1} \underbrace{f(\xi)}_{\in \mathbf{L}^\infty}$$

So $\hat{\rho}_t * f \in L^1$. This means that $\rho_t * f \in A$. We have that

$$\|\mathcal{F}(\rho_t * f) - \mathcal{F}(f)\|_2 = \|\tilde{\mathcal{F}}(\rho_t * f) - \tilde{\mathcal{F}}(f)\|_2 = \|\rho_t * f - f\|_2,$$
$$\|\mathcal{F}(\rho_t * f) - \tilde{\mathcal{F}}(f)\|_{\infty} \le \|\rho_r * f - f\|_1.$$

Let $B \subseteq \mathbb{R}^n$ be a bounded ball. We have

$$\|\tilde{\mathcal{F}}(f) - \mathcal{F}(f)\|_{2} \leq \|\tilde{\mathcal{F}}(f) - \mathcal{F}(\rho_{t} * \mathcal{F})\|_{2} + \|\mathcal{F}(\rho_{t} * f) - \mathcal{F}(f)\|_{L^{2}(B)} \leq \|\tilde{\mathcal{F}}(f) - \mathcal{F}(\rho_{t} * \mathcal{F})\|_{2} + \|\mathcal{F}(\rho_{t} * f) - \mathcal{F}(f)\|_{\infty} |B|$$

So we conclude that $\tilde{\mathcal{F}}(f) = \mathcal{F}(f)$ a.e. on B . \Box

Corollary 1.3. For $1 \le p \le 2$ and q = p/(p-1), we obtain an extension to $\mathcal{F} : L^p \to L^q$ such that $\|\mathcal{F}(f)\|_q \leq \|f\|_p$.

Producing periodic functions from L^1 functions 1.3

Theorem 1.2. Let $f \in L^1$.

1. There exists a periodic $Pf : \mathbb{R}^n \to \mathbb{R}$ such that $\|Pf\|_1 \leq \|f\|_1$.

2.
$$\widehat{Pf}^{\mathbb{T}^n}(\ell) = \widehat{f}^{\mathbb{R}^n}(\ell)$$

3. $Pf(x) = \sum_{k \in \mathbb{Z}^n} \tau_k f(x).$

Proof. Let $Q = [-1/2, 1/2)^n$. Set $F_m(x) = \sum_{|k| \le m, k \in \mathbb{Z}^n} f(x-k)$. By the monotone convergence theorem,

$$\int_{Q} \sum_{k \in \mathbb{Z}^{n}} |f(x-k)| \, dx = \sum_{k \in \mathbb{Z}^{n}} \int_{Q} |f(x-k)| \, dx = \sum_{k \in \mathbb{Z}^{n}} \int_{Q+k} |f(x)| \, dz = \int_{\mathbb{R}^{n}} |f(z)| \, dz.$$

This proves that the series $(F_m(x))_m$ converges absolutely for a.e. $x \in Q$. So $(F_m(x))_m$ converges for a.e. $x \in Q$ to a value Pf(x). We have that Pf is periodic. We also get that

$$\|Pf\|_{L^1(Q)} \le \|f\|_1.$$

This completes the proofs of the first and third statements.

If $\ell \in \mathbb{Z}^n$, then

$$\widehat{Pf}^{\mathbb{T}^n}(\ell) = \int_Q Pf(x)e^{-2\pi i\ell \cdot x} dx$$
$$= \int_Q \sum_Q \sum_{k \in \mathbb{Z}^n} f(x-k)e^{-2\pi i\ell \cdot x} dx$$

Let z = x - k.

$$= \sum_{k \in \mathbb{Z}^n} \int_{Q+k} f(z) e^{-2\pi i \ell \cdot z} e^{-2\pi i k \cdot \ell} dz$$
$$= \int_{\mathbb{R}^n} f(z) e^{2\pi i \ell \cdot z} dz = \widehat{f}(\ell).$$